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A theoretical analysis of bubble interaction in boiling systems
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Abstract

Classical analyses of boiling nucleation typically employed a linear approach with nucleation phenomena investigated by focu
single site and the heat transfer obtained from the active site density assuming uniform wall superheat. Possible strong interacti
bubbles were ignored. This paper proposed a new theoretical framework to analyze the interactions among bubbles and the self
effect among bubbles was revealed. These studies may provide a more reasonable mechanistic description or engineering in
boiling heat transfer.
 2004 Elsevier SAS. All rights reserved.
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1. Introduction

Boiling is often encounteredin a wide variety of appli-
cations, including traditional industrial processes, such
metallurgical quenching, flooded tube and shell evapora
and immersion cooling of industrial components and m
ern heat transfer technologiesused in space, electronic com
ponents, nuclear reactors, etc.The importance of boiling in
a wide variety of applications has provided an incentive
numerous investigations of its mechanisms over the past
eral decades. A substantial number of such efforts have
devoted to understanding and modeling the heat transfer
ing the boiling process. A plethora of empirical correlatio
are now available in the literature [1]. However, becaus
the multiplicity of variables influencing the boiling system
and strong nonlinear features [2,3], a complete theory is
far from being created, because the phenomena are too
plicated and have not been sufficiently understood.

In classical theories, boiling heat transfer predictions
remain principally an empirical art and traditional modeli
efforts typically use a linearizedapproach. For example, th
physical phenomena are analyzed on the basis of a singl
or vapor bubble, and the heat transfer rate is obtained
given active site density distribution by assuming unifo
conditions, i.e., the bubbles have no effect on the forma
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of adjacent bubbles. Consequently, possibly important in
actions between bubbles are ignored. However, for pra
cal boiling processes, interactions do occur between a
cent bubbles [4]. Therefore, the traditional linear approac
often conflicts with observations of hysteresis, intermitt
activity, deactivation of sites with increasing heat flux an
interactions among sites [5]. More severely, classical the
cannot be effectively relatedto macroscopic models becau
it is based on individual discrete active sites [6].

The bubbles or sites on the boiling surface are rando
distributed [7–9]. Nucleate bubbles mainly interact by t
kinds of thermal and hydrodynamic processes [10–
that change the local superheat and the other param
that determine the stability of adjacent nuclei. As
local transient wall superheat values vary stochastic
nucleation sites will stochastically affect the on/off states
adjacent sites.

The development of modern measurement technique
provided much visualization of boiling processes and t
synergetic effects [11–13]. Kenning and Yan [11] noted t
active sites can co-exist within one bubble radius of e
other and that the sites interact through the variation in w
temperature induced by embryo bubble generation, w
results in intermittent bubbles generation. Judd and Ch
[12] investigated different mechanisms for the interactions
which may also be interpreted as self-organizing phenom
described here. Nelson and Bejan [14] demonstrated
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Nomenclature

b1 ∼ b4 constants
fi functions introduced in Eq. (22)
Fu,Fs fluctuation forces introduced in Eqs. (20)

and (21)
G function defined in Eqs. (15) and (38)
h heat transfer coefficient, function defined in

Eqs. (15) and (26) . . . . . . . . . . . . . . W·m−2·K−1

J, �J flux . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . W
J ′′ flux density . . . . . . . . . . . . . . . . . . . . . . . . . W·m−2

l characteristic length . . . . . . . . . . . . . . . . . . . . . . m
L matrix defined in Eq. (30)
�N function defined in Eq. (36)
Ns the number of stable modes
p exponential coefficient
r bubble radius . . . . . . . . . . . . . . . . . . . . . . . . . . . . m
S function defined in Eq. (20)
t time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . s
T function introduced in Eq. (21)
u,v vectors defined in Eqs.(28) and (35),

respectively, velocity . . . . . . . . . . . . . . . . . . m·s−1

Ws,Wu potential functions of stable modes and unstable
modes

x driving force
x driving force vector
z coordinates

Greek symbols

ρ probability density
σ , σ̄ constants
η constants
λ damping coefficient
α controlling parameter defined in Eq. (43)
�,�� potential functions
ζ constant
ξ normalized temperature difference variable
µ constant
ψ constant
Ω area unit

Subscripts

0 reference state
S saturation
s, s′, s′′, s′′′ stable modes
u,u′, u′′, u′′′ unstable modes
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competing mechanisms exist among sites, and that
preferential sites will be activated, while other sites will
suppressed [15].

However, the vivid dynamics characteristics are
very clear yet. A new theoretical perspective on the b
ing process is needed. Different from partial differen
equations, here, new equations for boiling are obtai
from statistical mechanics and a corresponding mathe
ical description of bubble interaction is elaborated. S
organization phenomena are correspondingly investiga
Industrial instructions based on theoretical results are fin
discussed.

2. Physical descriptions on bubble interactions—beyond
nonlinear partial differential equations

2.1. Classical difficulties fromnonlinear partial differential
equations

The nonlinear effects involved in boiling systems inclu
non-uniform site distribution, the on/off behavior of site
the formation and evaporation of micro-layers and mac
layers, bubble generation, growth, departure and coa
cence, and interactions between bubbles, etc. Of course
nonlinear behavior of pool boiling systems would be inv
tigated if we could solve the controlling partial different
equations in a control volume of the two-phase system
the boundary layer adjacent to the heater surface. How
problems rest with the fact that we have difficulties in de
.

e

,

ing with this kind of nonlinear partial differential equatio
(though numerical computation can make some achi
ments): For one reason, we have not yet a general wa
analytically deal with nonlinear partial differential equatio
in mathematical kingdom; For another reason, active site
bubbles are stochastically distributed on a surface area
very special boundary conditionsmake it difficult to obtain
exact theoretical solutions for nonlinear partial differen
equations. In a word, an alternative theoretical framewor
highly needed to describe the bubble interaction process

2.2. Statistical mechanics analysis of bubble
interaction—beyond nonlinear partial differential equatio

The equivalence of Lagrange’s analytical mechan
to Newton’s framework for mechanics (partial different
equation for mechanics) gives us hint that we can ev
partial differential equation in an alternative way wh
dealing with boiling systems. Statistical mechanics ba
on Lagrange’s optimization may be an alternative way. T
reasons are as follows:

Firstly, descriptions of boiling need statistical mechan
In the boiling process, the parameters of heater surface,
as temperature are extremely non-uniform and rapidly v
with time for the nonlinear interactions [8]. It is necessary
analyze nonlinear characteristics from a microscopic view
Macroscopic complex boundary systems adjacent to th
heater surface consist of a large number of objects, viewe
elementary. Doubtless, a sufficiently complete and adeq
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dynamic description in most cases can only be achieve
the basis of the statistical mechanics.

In addition, we need Lagrange’s optimization. For pro
lems in thermal equilibrium of closed systems, entropy
maximized as an extreme. By dealing with entropy, we
obtain a microscopic understanding of thermal equilibrium
closed systems. For non-equilibrium open systems, flux
be chosen a maximized property [16]. Maximization of fl
can be developed by Lagrange’s optimization [4,17]. T
let us discuss how Lagrange’s optimization can bring n
understanding of microscopic nonlinear dynamics of b
ing.

Assuming the driving forces of sub-elements, i.e.,
cause of receiving flux from heater, can be expresse
x1, x2, . . . , xn, which are lumped as a vectorx = (x1, x2,

. . . , xn), the driving forces here indicate temperature d
ference between heater and liquid bulk. Similar to classi-
cal statistical theory, here wecan consider that all poss
ble microstates compose a continuous range in theΓ space.
dx = dx1dx2 · · ·dxn is a volume unit inΓ space. The prob
ability for the state of the system existing within the volum
unit dx at timet is

ρ(x, t)dx (1)

ρ(x, t) is distribution function of ensemble, which satisfi
the normalization condition∫

ρ(x, t)dx = 1 (2)

Assuming that the heat flux isJ when the state of the syste
exists within the volume unit dx at timet , the averaged flux
over all possible microstates is

�J =
∫

ρ(x, t)J (ρ)dx (3)

By use of Lagrange multiplier, let us maximize Eq. (3) un
the following constraints (i.e., prices given)

〈xi〉 = b1 (4)

〈xixj 〉 = b2 (5)

〈xixjxk〉 = b3 (6)

〈xixjxkxl〉 = b4 (7)

We obtain that [4,17]

ρ = exp

{
ζ +

∑
i

σixi +
∑
ij

σij xixj +
∑
ijk

σijkxixj xk

+
∑
ijkl

σijklxixjxkxl + · · ·
}

(8)

Defining the exponential term of Eq. (8) as poten
function [4,17]

�(σ,x) = ζ +
∑

i

σixi +
∑
ij

σij xixj +
∑
ijk

σijkxixj xk

+
∑

σijklxixjxkxl + · · · (9)

ijkl
σ in left term represents vector, andσ in right term
represents scalar.ζ andσ are both parameters produced
Lagrange optimization. Accordingly, by transformation
xi = ∑

k ψkiξk , Eq. (9) can be changed as [4,17]

��(λ, ξ) = ζ +
∑

k

λkξ
2
k + · · · (10)

As general analyses,ξ is normalized by temperature diffe
ence in any reference point chosen. In applications,ξ is usu-
ally normalized by temperature difference between out
environment and liquid bulk.

Stable modes (λk < 0) represent that the bubbles cann
grow up and form, and unstable modes represent the uns
modes (λk > 0) stand for the formations of bubbles. Cons
ering the identifiable contributions of stable modes and
stable modes, the potential function can be decompose
[4,17]

��(λ,ξ) = ζ + ��u(λu, ξu) + ��s(λu,λs; ξu, ξs) (11)

where

�Φu(λu, ξu) =
∑
u

λuξ
2
u +

∑
uu′u′′

λuu′u′′ξuξu′ξu′′

+
∑

uu′u′′u′′′
λuu′u′′u′′′ξuξu′ξu′′ξu′′′ + · · · (12)

�Φs(λu,λs; ξu, ξs)

=
∑

s

(−|λs |ξ2
s

)

+
∑
suu′

3λsuu′ξsξuξu′ +
∑

suu′u′′
4λsuu′u′′ξsξuξu′ξu′′

+
∑
ss ′u

λss ′uξsξs ′ξu +
∑
ss ′s ′′

λss ′s ′′ξsξs ′ξs ′′

+
∑

ss ′uu′
λss ′uu′ξsξs ′ξuξu′ +

∑
ss ′s ′′u

λss ′s ′′uξsξs ′ξs ′′ξu

+
∑

ss ′s ′′s ′′′
λss ′s ′′s ′′′ξsξs ′ξs ′′ξs ′′′ + · · · (13)

Therefore

ρ(x) = ρ(ξu, ξs) = exp
[�Φ(λ, ξ)

] = ρ(ξu)ρ(ξs/ξu) (14)

According to statistical theory, Eq. (14) is satisfied at a
conditions, forρ(ξu, ξs) is joint probability andρ(ξs/ξu) is
conditional probability. Eq. (14) does not mean that evenξu

and eventξs/ξu must be independent from each other [1
Defining∫

exp
(�Φs

)
dNs ξs = g(ξu) = exp

[−h(ξu)
]

(15)

Ns is the number of stable modes. Obviously

Ws = h(ξu) + �Φs (16)

Wu = ζ + �Φu − h(ξu) (17)
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ρ(ξu) = exp(Wu) (18)

ρ(ξs/ξu) = exp
[
Ws(ξs/ξu)

]
(19)

Eqs. (18) and (19) can be regarded as the solution
Fokker–Planck equations, which are equivalent to follow
Langivan equations

ξ̇u = λuξu + Su(ξu, ξs) + Fu(t) (20)

ξ̇s = λsξs + Ts(ξu) + Fs(t) (21)

Clearly, forWu andWs are known, the functionsSu and
Ts can be decided. Langivan equations are dynamic.
forceF(t) often appears in Langivan equation, and refle
stochastic effects, which put system to jump from one s
to another [17]. In fact, we surprisingly obtained the typi
evolution dynamic equations for boiling systems, by which
self-organization of boiling systems can be investigated.

3. Dynamic analysis of bubble interactions in the
framework of statistical mechanics

Above analyses facilitate an elegant way to investig
bubble interaction. We then consider multiple sites/bubb
interaction in a general way. As shown in Eqs. (20) and (
interactions among active sites or bubbles are refle
through only one variable—normalized temperature dif
ence in chosen region, which is directly related to the b
ble dynamic parameters, such as radius variabler. Equations
with form similar to Eqs. (20) and (21), which describe t
dynamic interaction of all possible bubbles, are written a

ξ̇i = −λiξi + fi(ξ1, ξ2, . . . , ξn) (i = 1,2, . . . , n) (22)

fi is a function of multiple parameters when consider
the interactions among numerous possible bubbles. C
ficients λi indicate damping effect. During the compe
tive processes controlled by this set of equations, con
ling and controlled compromise prevails if coefficientλi

differs each other. More specifically, the development o
modes with small damping coefficients (mean small re
tances) will dominate the development of modes with
atively large damping coefficients (mean large resistan
In fact, in classical quantum mechanics realm, accord
to well-known adiabatic elimination principle [17], for th
interacting multi-elements system described by the kind
equations with form like Eq. (22), the self-organized evo
ing process prevails, providing that the damping coefficie
λi are non-uniform. Let us do more detailed analyses.
cording to the magnitude of coefficientsλi , Eq. (22) can
be divided into some groups as was done in part 2.2: e
tions of the weakly damped modes with smallλi denoted as
i = u = 1,2, . . . ,m, and equations of the stable modes w
relatively largeλi denoted asi = s = m + 1,m + 2, . . . , n.
For possible bubbles with stable modes (largeλi ) whose
growths will be controlled by possible bubbles with wea
damped modes (smallλi ), in other word, these controlle
bubbles cannot grow anḋξ = 0, and hence Eqs. (22) can
changed as

λsξs = fs

(
ξ1, ξ2, . . . , ξm, ξm+1(ξi), . . . , ξn

)
(23)

This is a kind of self-organized process. In physical persp
tive, it can be imaged that whenwall temperatures reach ce
tain values, first group of sites/bubbles (i = u = 1,2, . . . ,m)
with small damping coefficients will be activated. The
by interactions, the development of sites/bubbles (i = u =
1,2, . . . ,m) will control and dominate the development
sites/bubbles (i = s = m + 1,m + 2, . . . , n) with relatively
large damping coefficients. Ifthe damping coefficients sa
isfy

λ1 � λ2 � λ3 � · · · (24)

the terms related toξ1 can be eliminated without affectin
the other terms. The terms related toξ2 are then eliminated in
succession until only one variable remains. When one m
does not dominate the other modes, flashing will oc
Flashing is likely to occur when

λ1 ≈ λ2 ≈ λ3 ≈ · · · ≈ λn (25)

But the flashing only occurs on the special occasion s
as strong or fast heating, or some other special cases
can make parameters of heating surface zone be unifor
soon as possible, which can confirm condition of Eq. (
to satisfy. In general cases, for the existence of all ki
of stochastic factors in boiling system, the wall parame
are always non-uniform. In most nucleating processes
boiling system, as described above, only one or a few s
in a specific unit will become unstable while most other s
will remain damped. The disturbance is induced by w
parameters, which affect the damped modes.

Sometimes we refer to show self-organized proc
through variable of bubble like radiusr. In the following
section we will show the above analysis is equivalen
that based on bubble radius. For an arbitrary boiling sys
bubble growth rate can be rewritten by bubble radius as

ṙj = hj (r1, r2, . . . , rn) (26)

wherehj is a nonlinear function ofr1, r2, r3, . . . , rn. The
function h takes the interactions among active sites
bubbles into account. For a steady-state solution of Eq. (26
given by r0

j , the right side of Eq. (26) is dependent on
group of parametersβ1, β2, β3, . . . , βn, which are chose in
such a way thatr0

j stands for stable values. The origin of t
r coordinate system can be shifted so that

r0
j = 0 (27)

For small perturbations, the unsteady results can be
scribed by

rj (t) = r0
j + uj (t) (28)

⇀
r (t) = ⇀

r 0 + ⇀
u(t) (29)
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where r is decomposed into a steady-state value an
perturbation. If the system is stable anduj is sufficiently
small, Eq. (26) is linearized by substituting Eq. (28) in
Eq. (26) so that

u̇j =
∑
j ′

Ljj ′uj ′ (30)

Matrix Ljj is a function of
⇀
r 0 and β1, β2, β3, . . . , βn.

Eq. (30) is written as

�̇u = L
⇀
u (31)

Eqs. (30) or (31) is the first order ordinary different
equation with the solution

⇀
u = ⇀

u (µ)(0)exp(λµt) (32)

hereλµ are the eigen-values

λµ
⇀
u (µ)(0) = L

⇀
u (µ)(0) (33)

⇀
u (µ)(0) is the right eigen-vector, and the generalized so
tion of Eqs. (30) or (31) is the superposition of Eq. (32)

⇀
u =

∑
µ

ξµ exp(λµt)
⇀
uµ(0) (34)

ξµ can be considered as normalized temperature differ
variable. Introducing the left eigen vector

⇀
v (µ) and requir-

ing that

λµ
⇀
v (µ) = ⇀

v (µ)L (35)

If the system is stable, the real parts ofλµ are all negative
If non-linear effects are considered, Eq. (31) will have
form

⇀̇
u = L

⇀
u + ⇀

N(
⇀
u) (36)

N⇀(u⇀) represents the nonlinear contribution. Ifu is still
expressed in the form given by Eq. (34), then the approp
expressionξ(t) must be found so that the following relatio
is satisfied when left multiplying Eq. (36)
〈⇀
v (µ),

⇀
u (µ′)〉 = δµµ′ (37)

Eq. (36) simply becomes

ξ̇µ = λµξµ + gµ(ξ1, ξ2, . . . , ξn) (38)

wheregµ = 〈⇀v (µ),
⇀

N(
∑

µ ξµ
⇀
u (µ))〉.

Eq. (38) has the same form as Eq. (22). The parame
β1, β2, β3, . . . , βn, can be modified to destabilize Eq. (38
so that one or a fewλµ are equal to or greater than ze
with the others have a negative real part and thus
relating to the damping modes. If modeξr for Re(λµ) � 0
is sufficiently greater than other modes, then adiab
elimination and self-organization work.

Nucleate boiling is a self-organized dynamic proce
which means that nucleate boiling system is a typ
ordered dissipative structure [3]. The self-organized anal
provides a clear picture of the formation of this kind
ordered dissipative structure.

Then let us discuss how heat flux is distributed, which
more important for the understanding of self-organizat
According to above dynamic analysis, and considering
decompositions ofJ (ξu, ξs), Eq. (3) can be changed as

�J =
∫

ξu,ξs

∏
s

ρs(ξs/ξu)ρ(ξu)

[
J (ξu) +

∑
s

Js(ξs/ξu)

]
dξ

(39)

It is known that∫
ξs

[
ρs(ξs/ξu)

]
dξs = 1 (40)

Eq. (39) can be changed as

�J =
∫
ξu

ρ(ξu)J (ξu) +
∫

ξu,s

ρ(ξu)

∫
ξs

ρs(ξs/ξu)Js(ξs/ξu)dξ

(41)

That is

�J =
∫
ξu

ρ(ξu)J (ξu) +
∫
ξu

ρ(ξu)

∫
ξs,s

ρs(ξs/ξu)Js(ξs/ξu)dξ

(42)

When we normalize the control parameter such that
instability occurring atα = 0, thenλu andλs depend onα
in the following manners.

λu = αk (43)

λs = λs(0) + 0(α) ≈ λs(0) (44)

Wherek is some positive number. Obviously,λu depends
very sensitively onα, whereasλs depends only weakly o
it because the leading term is a non-vanishing cons
Similarly, the functionsSu, Ts , Fu, andFs depend also only
weakly onα.

By introducing the new variables, we can eliminate
dependence of the probability distribution of the ensla
variables onξs so that Js becomes independent ofξu,
therefore, in Eq. (42) we may perform the integration o
ξu in the second term of the right hand. We thus obtain th

�J = Ju +
∑

s

Js (45)

Where the second part does not depend onα, at least in
the present approximation. Therefore, the flux change c
to the instability point is governed by that of unstable s
elements or modes alone

�J (α1) − �J(α2) ≈ Ju(α1) − Ju(α2) (46)

Eq. (46) provides clear physical picture: by self-organi
process, only unstable sub-elements or modes with stro
ability can get flux and develop. For open complex boil
system that consists of many subsystems, some of t
can use the heat flux better. In other words, heat



1072 L.H. Chai / International Journal of Thermal Sciences 43 (2004) 1067–1073

des,
ole

d
t of
ave

us
all

des
x to

s

per-
can
f
an-
8])
ol-

es
en-
nal

y
ites

nd

,
eat

igh
ike

ive
is

y of

tifi-
re-

l
ey
er.

ac-
cal
iors.
is-
ate
ion
un-
wn
t on
a-

hat

ay
rti-

ast
is on
self-
sent
tions
ion
, al-
t to

ific
inese
ghly

ere,

e,
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which may dominant the macroscopic behavior of the wh
system.

4. Spatial correlation induced by bubble interactions

4.1. Interaction spatial correlation and fractal dimension

The above analyses show that heat flux is concentrate
in one or a few sub-elements or modes, though a lo
possible modes exist simultaneously. In this way, we h
the expression

�Jn(α1) − �Jn(α2) = Jun(α1) − Jun(α2) ∼ hnl
2ξn (47)

To consider bubble interaction spatial correlation, let
discuss heat flux interaction among different modes in
kind of spatial scales. We consider the heat flux from mo
of last scale, heat flux increase in this scale and heat flu
next scale, the cascade heat flux balance then gives

ξS
d

dz

l∫
0

udy − a

(
∂ξ

∂y

)∣∣∣
w

= d

dz

l∫
0

ξudy (48)

For arbitraryu andξ distribution, Eq. (48) usually yield

hn ∼ l−p (49)

Depending on actual distribution ofu andξ , p, as a specific
parameter ranging from 0 to 1.

Considering that driving forces are chosen as the tem
ature difference between heater and bulk of system, we
derive the fractal structure (Note: fractal structure is a kind o
patch structure, and fractal geometry was developed by M
delbrot to describe the structure with fractal dimension [1
describing the distribution of active sites or bubbles in f
lowing way

Ωn�J

Ω(n−1)�J
= Ωn

Ω(n−1)

∼ Jun(α1) − Jun(α2)

Ju(n−1)(α1) − Ju(n−1)(α2)

∼ hnl
2
nξn

h(n−1)l
2
(n−1)ξn−1

∼
[

ln

l(n−1)

](2−p)

(50)

Parameter 2− p is fractal dimension, whose value indicat
spatial distribution of active sites or bubbles. Fractal dim
sion physically embodies dynamics features of evolutio
complex boiling systems. Once we have theu andξ distrib-
ution (though determiningu andξ distribution is not an eas
job), we can determine the distribution density of active s
or bubbles. Here, we roughly give two examples, ifu andξ

have trivial polynomial distribution, which may correspo
to case of laminar flow and heat transfer, we havep = 1/2
and 2− p = 3/2. If u andξ have logarithmic distribution
which may correspond to the case of turbulent flow and h
transfer, we havep = 1/5 and 2− p = 9/5. This result is
in agreement with experimental observations. During h
heat flux, flow induced by bubble is very intense, more l
violent turbulent flow, so we have a high density of act
sites. While during low heat flux, flow induced by bubble
less intense than violent turbulent, we have a low densit
active sites.

4.2. Engineering instructions

Enhancement of boiling heat transfer by means of ar
cial cavities is a very important aspect of heat transfer
search because boiling occurs ina wide variety of industria
applications. The distribution of artificial cavities is a k
factor for optimizing and controlling boiling heat transf
The present investigations show that interactions among
tive sites or bubbles result in stochastic variations of lo
parameters and corresponding complex dynamic behav
Placing artificial cavities on a theoretically optimized d
tribution of active points can greatly improve the nucle
boiling heat transfer efficiency. The foregoing investigat
results in a natural theoretical distribution of active sites
der the optimization that maximizes heat flux. It is sho
that the optimal distribution of active sites is dependen
the behavior of the active site itself. After knowing the fe
ture of artificial site and heating condition, which mean t
we can determine the distribution ofu andξ for the artifi-
cial site, we then can decide its distribution. The result m
provide some instructions for design and distribution of a
ficial cavities on heating plates.

5. Conclusions

Bubble interaction is a classical puzzle during p
decades. This paper proposed a novel theoretical analys
the interactions among active sites or bubbles and the
organizing effect among bubbles was revealed. The pre
studies may give more reasonable mechanistic descrip
of nucleation in boiling systems. The possible applicat
is correspondingly discussed. The present investigation
though preliminary, provides a renewed theoretical effor
understand the underlying mechanisms of nucleate boiling.
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