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Abstract

Classical analyses of boiling nucleation typically employed a linear approach with nucleation phenomena investigated by focusing on a
single site and the heat transfer obtained from the active site density assuming uniform wall superheat. Possible strong interactions amonc
bubbles were ignored. This paper proposed a new theoretical framework to analyze the interactions among bubbles and the self-organizinc
effect among bubbles was revealed. These studies may provide a more reasonable mechanistic description or engineering instruction o
boiling heat transfer.
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1. Introduction of adjacent bubbles. Consequently, possibly important inter-
actions between bubbles are ignored. However, for practi-
Boiling is often encountereih a wide variety of appli-  cal boiling processes, interactions do occur between adja-

cations, including traditional industrial processes, such ascent bubbles [4]. Therefore, ¢htraditional linear approach
metallurgical quenching, flooded tube and shell evaporators,often conflicts with observations of hysteresis, intermittent
and immersion cooling of industrial components and mod- activity, deactivation of site with increasing heat flux and
ern heat transfer technologiesed in space, electronic com- interactions among sites [5]. More severely, classical theory
ponents, nuclear reactors, efthe importance of boiling in  cannot be effectively relatedd macroscopic models because
a wide variety of applications has provided an incentive for it is based on individual discrete active sites [6].
numerous investigations of its mechanisms over the pastsev-  The bubbles or sites on the boiling surface are randomly
eral decades. A substantial number of such efforts have beendistributed [7—9]. Nucleate bubbles mainly interact by two
devoted to understanding and modeling the heat transfer durkinds of thermal and hydrodynamic processes [10-12]
ing the boiling process. A plethora of empirical correlations that change the local superheat and the other parameters
are now available in the literature [1]. However, because of that determine the stability of adjacent nuclei. As the
the multiplicity of variables influencing the boiling systems |ocal transient wall superheat values vary stochastically,
and strong nonlinear features [2,3], a complete theory is still hycleation sites will stochastically affect the on/off states of
far from being created, because the phenomena are too COMadjacent sites.
plicated and have not been sufficiently understood. The development of modern measurement techniques has
In classical theories, boiling heat transfer predictions still provided much visualization of boiling processes and then
remain pri_ncipally an e.mpiri_cal art and traditional modeling synergetic effects [11—13]. Kenning and Yan [11] noted that
efforts typically use a linearizegpproach. For example, the  5tive sites can co-exist within one bubble radius of each
physical phenomena are analyzed on the basis of a single sitgyiher and that the sites interact through the variation in wall
or vapor bubble, and the heat transfer rate is obtained for aygherature induced by embryo bubble generation, which
given _act|ve_ site density distribution by assuming umfor_m results in intermittent bubbles generation. Judd and Chopra
conditions, i.e., the bubbles have no effect on the formation [12] investigated different meamisms for the interactions,
which may also be interpreted as self-organizing phenomena
E-mail addresslhchai@tju.edu.cn (L.H. Chai). described here. Nelson and Bejan [14] demonstrated that
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Nomenclature

b1 ~ bg constants X driving force

fi functions introduced in Eq. (22) X driving force vector

F,, F; fluctuation forces introduced in Egs. (20) z coordinates
and (21) Greek symbols

G function defined in Egs. (15) and (38)

h heat transfer coefficient, function defined in P probability density
Eqgs. (15)and (26) .............. wi—2.K-1 0,0  constants

T, T flUX. w 7 constants

J" flux density . ..........coovviinnn... W2 A damping coefficient

! characteristiclength ...................... m o _ controlling parameter defined in Eq. (43)

L matrix defined in Eq. (30) ®,® potential functions

N function defined in Eq. (36) ¢ constant

Ny the number of stable modes & normalized temperature difference variable

p exponential coefficient " constant

r bubbleradius ............................ m ¥ constant

S function defined in Eq. (20) 2 area unit

t Me S .

T function introduced in Eq. (21) Subscripts

u,v  vectors defined in Egs.(28) and (35), 0 reference state
respectively, velocity .................. a7t S saturation

W,, W, potential functions of stable modes and unstable s,s’.s”,s”" stable modes
modes u,u’,u”, u” unstable modes

competing mechanisms exist among sites, and that onlying with this kind of nonlinear partial differential equations
preferential sites will be activated, while other sites will be (though numerical computation can make some achieve-
suppressed [15]. ments): For one reason, we have not yet a general way to
However, the vivid dynamics characteristics are not analytically deal with nonlinear partial differential equations
very clear yet. A new theoretical perspective on the boil- in mathematical kingdom; For another reason, active sites or
ing process is needed. Different from partial differential bubbles are stochastically distributed on a surface area. The
equations, here, new equations for boiling are obtained very special boundary conditiomsake it difficult to obtain
from statistical mechanics and a corresponding mathemat-exact theoretical solutions for nonlinear partial differential
ical description of bubble interaction is elaborated. Self- equations. In a word, an alternative theoretical framework is

organization phenomena are correspondingly investigated.highly needed to describe the bubble interaction process.
Industrial instructions based on theoretical results are finally

discussed. 2.2. Statistical mechanics analysis of bubble

interaction—beyond nonlinear partial differential equations

2. Physical descriptionson bubbleinteractions—beyond _ . .
nonlinear partial differential equations The equivalence of Lagrange’s analytical mechanics

to Newton’s framework for mechanics (partial differential
2.1. Classical difficulties fromonlinear partial differential ~ €quation for mechanics) gives us hint that we can evade
equations partial differential equation in an alternative way when

dealing with boiling systems. Statistical mechanics based

The nonlinear effects involved in boiling systems include ©On Lagrange’s optimization may be an alternative way. The

non-uniform site distribution, the on/off behavior of sites, reasons are as follows:
the formation and evaporation of micro-layers and macro-  Firstly, descriptions of boiling need statistical mechanics.
layers, bubble generation, growth, departure and coales-In the boiling process, the parameters of heater surface, such
cence, and interactions between bubbles, etc. Of course, th&s temperature are extremely non-uniform and rapidly vary
nonlinear behavior of pool boiling systems would be inves- with time for the nonlinear interactions [8]. It is necessary to
tigated if we could solve the controlling partial differential analyze nonlinear characteres from a microscopic view.
equations in a control volume of the two-phase system in Macroscopic complex bounda systems adjacent to the
the boundary layer adjacent to the heater surface. Howeverheater surface consist of a large number of objects, viewed as
problems rest with the fact that we have difficulties in deal- elementary. Doubtless, a sufficiently complete and adequate
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dynamic description in most cases can only be achieved ono in left term represents vector, and in right term

the basis of the statistical mechanics. represents scalar.ando are both parameters produced by
In addition, we need Lagrange’s optimization. For prob- Lagrange optimization. Accordingly, by transformation of

lems in thermal equilibrium of closed systems, entropy is x; = Y, V&, EQ. (9) can be changed as [4,17]

maximized as an extreme. By dealing with entropy, we can _

obtain a microscopic understding of thermal equilibrium  ®(.,§) =¢ + Z?»kSkZ +--- (10)

closed systems. For non-equilibrium open systems, flux may k

be chosen a maximized property [16]. Maximization of flux - As general analyses$, is normalized by temperature differ-

can be developed by Lagrange’s optimization [4,17]. Then ence in any reference point chosen. In applicatigris usu-

let us discuss how Lagrange’s optimization can bring new gy normalized by temperature difference between outside

understanding of microscopic nonlinear dynamics of boil- enyironment and liquid bulk.

Ing. _ . _ Stable modes) < 0) represent that the bubbles cannot
Assuming the driving forces of sub-elements, i.e., the groy up and form, and unstable modes represent the unstable

cause of receiving flux from heater, can be expressed asmgdes g, > 0) stand for the formations of bubbles. Consid-

X1, X2, ..., Xy, Which are lumped as a vecter= (x1,x2,  gring the identifiable contributions of stable modes and un-
.-, X), the driving forces here indicate temperature dif- giaple modes, the potential function can be decomposed as
ference between heater anduid bulk. Similar to classi- [4,17]

cal statistical theory, here wean consider that all possi- _ _

ble microstates compose a continuous range intlspace.  ®(1,§) = ¢ + Py (hy, &) + Py (M Ass Eus &5) (11)

dx = dx1dx2 - - - dx,, is a volume unit inI” space. The prob-
ability for the state of the system existing within the volume
unit dx at timet is

where

q?u (Aus Su) = Z)\ué,f + Z )Luu’u”éuéu’éu”
u

p(X, 1) dx (1) uu'u”
p(X, 1) is distribution function of ensemble, which satisfies + Z Au'ww" EnEur Er Em + -+ (12)
the normalization condition un'u'"u"
/,O(X, Hdx=1 2) D5 (M, As; &u, &s)
. . = Z(_ As |552)
Assuming that the heat flux is when the state of the system P
exists within the volume unitxdat timez, the averaged flux
over all possible microstates is + 2 Fhokbub + Y, Ahsuwar§sububur
‘TZ / ’O(X’ t)J(,O) dx (3) + Z)‘ss/uésés/éu + Z )Lss’s”ésés’és”
By use of Lagrange multiplier, let us maximize Eq. (3) under s s
the following constraints (i.e., prices given) + Z hssuw €sEs §ubuw + Z hss's"ubsEs s u
ss'uu’ ss's"u
(xi) =b1 (4)
+ )\, A ITET AU + - 13
1)) = by ) Z ssrsrsmsksEsnts (13)
(xixjxi) = bs 6) Therefore
(xixjxpx;) = ba (7) —
! , pX) = pu. &) =exP @, §)] = pE)pEs/E) (14)
We obtain that [4,17]
According to statistical theory, Eq. (14) is satisfied at any
p= exp{g + Zcr,-x,- + chjx,-xj + chjkx,-xjxk conditions, forp (&, &) is joint probability ando (§;/&,) is
i i ijk conditional probability. Eq. (14) does not mean that exgnt
and eveng, /&, must be independent from each other [17].
+ Z Oy jkIXiX j Xk X] + - - } (8) Defining
ijkl
Defining the exponential term of Eq. (8) as potential /exp(qbs) dVeg, = g(&,) =exg—h(&)] (15)
function [4,17] _
N; is the number of stable modes. Obviously
<I>(0,X)=§+Zcr,-x,-+chjx,-xj+2cnjkxixjxk .
i ij ijk Wy = h(&) + Ps (16)
+ Zaijklxixjxkxl +--- 9 Wy =¢+ @y — h(E) (17)

ijki
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Then damped modes (small;), in other word, these controlled
bubbles cannot grow ard= 0, and hence Egs. (22) can be
p(E,) = exp(W,) (18)  changed as
s/&u) = €X WS s/Su 19
p(6s/5u) = XK Ws 6:/60)] ) e = At b Enia@), . E) (23)

Egs. (18) and (19) can be regarded as the solutions of
Fokker—Planck equations, which are equivalent to following
Langivan equations

This is a kind of self-organized process. In physical perspec-

tive, it can be imaged that whevall temperatures reach cer-

tain values, first group of sites/bubblés{u =1, 2, ..., m)

4 = huky + Su(Eu, &) + Fu (1) (20) with small damping coefficients will be activated. Then,

t o by interactions, the development of sites/bubbles ¢ =

S =hobe + TG T F ) (21) 1,2,...,m) will control and dominate the development of
Clearly, for W,, and W, are known, the functions, and sites/bubblesi(= s =m + 1,m + 2, ..., n) with relatively

T, can be decided. Langivan equations are dynamic. Thelarge damping coefficients. the damping coefficients sat-

force F () often appears in Langivan equation, and reflects isfy

stochastic effects, which put system to jump from one state

to another [17]. In fact, we surprisingly obtained the typical 1> 42> A3> - (24)

evolution dynamic equationsifdoiling systems, by which  the terms related t¢; can be eliminated without affecting
self-organization of boiling systems can be investigated.  the other terms. The terms related:tare then eliminated in
succession until only one variable remains. When one mode

_ . _ o does not dominate the other modes, flashing will occur.
3. Dynamic analysis of bubbleinteractionsin the Flashing is likely to occur when

framework of statistical mechanics
MR I NG Ay (25)
Above analyses facilitate an elegant way to investigate gt the flashing only occurs on the special occasion such
bubble interaction. We then consider multiple sites/bubbles ;¢ strong or fast heating, or some other special cases that

interaction in a general way. As shown in Egs. (20) and (21), ¢an make parameters of heating surface zone be uniform as
interactions among active sites or bubbles are reflectedgygn a5 possible, which can confirm condition of Eq. (25)
through only one variable—normalized temperature differ- 14 satisfy. In general cases, for the existence of all kinds
ence in chosen region, which is directly related to the bub- f siochastic factors in boiling system, the wall parameters
ble dynamic parameters, such as radius variaguations e gjways non-uniform. In most nucleating processes in a
with form similar to Egs. (20) and (21), which describe the 1jjing system, as described above, only one or a few sites
dynamic interaction of all possible bubbles, are written as i, 4 gpecific unit will become unstable while most other sites
E=—N&+ fik1.E2..... &) (=12...n) (22) will remain damped. The disturbance is induced by wall

] ] ] o parameters, which affect the damped modes.
fi is a function of multiple parameters when considering Sometimes we refer to show self-organized process

the interactions among numerous possible bubbles. Coef- 6,91 variable of bubble like radius In the following
ficients 2; indicate damping effect. During the competi- gection we will show the above analysis is equivalent to

tive processes controlled by this set of equations, control- 4t hased on bubble radius. For an arbitrary boiling system,

ling and controlled compromise prevails if coefficient bubble growth rate can be rewritten by bubble radius as
differs each other. More spédicially, the development of

modes with small damping coefficients (mean small resis- 7 = h(r1,72, ..., %) (26)
tances) will domingte the d.e\./elopment of modes V.Vith rel- whereh; is a nonlinear function ofq,r2,73,...,r,. The
atively Igrge dampmg coefficients (me.an large res'Stan(.:e)'function h takes the interactions among active sites or
In fact, in classu;al q‘r""‘”‘?’”.‘ m(.echan.|cs. realm, according bubbles into account. For a sthastate solution of Eq. (26)
_to Well-known a_dlabatlc elimination prlnc_:|ple [17], for_the given by 0, the right side of Eq. (26) is dependent on a
interacting multi-elements system described by the kind of group of pjarametersl,ﬂz,ﬁg, ... B, which are chose in

equations with form like Eq. (22), the self-organized evolv- g, " way that? stands for stable values. The origin of the

ing process pr_eva|ls, providing that the da_mplng coefficients » coordinate sydtem can be shifted so that
A; are non-uniform. Let us do more detailed analyses. Ac-

cording to the magnitude of coefficients, Eq. (22) can er: 0 (27)
be divided into some groups as was done in part 2.2: equa-
tions of the weakly damped modes with smialidenoted as
i=u=12,...,m, and equations of the stable modes with
relatively_largekl- denoteq as=s=m+1m+2...,n. ri(t) = er Fu ) (28)
For possible bubbles with stable modes (laige whose N R

growths will be controlled by possible bubbles with weakly r (t) = r L u@) (29)

For small perturbations, the unsteady results can be de-
scribed by
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where r is decomposed into a steady-state value and aprovides a clear picture of the formation of this kind of
perturbation. If the system is stable ang is sufficiently ordered dissipative structure.
small, Eq. (26) is linearized by substituting Eq. (28) into Then let us discuss how heat flux is distributed, which is

Eq. (26) so that more important for the understanding of self-organization.
) According to above dynamic analysis, and considering the
uj= Z Ljjuj (30) decompositions of (&,, &), Eq. (3) can be changed as

7
Matrix ij is a function of 70 and B1, B2, Ba, . .., Pn. J= / Hps (és/éu))o(éu)[-](éu) + Z Js (Ss/éu)i| dg
Eq. (30) is written as £E S s o)
i=Lu (31) It is known that
Egs. (30) or (31) is the first order ordinary differential / .
equation with the solution (o2 (& /60)] dss =1 (40)

&s

U=u®
u = u " (0) exprur) (32) Eq. (39) can be changed as
herex, are the eigen-values _

- N 7= [ peoser+ [ o6 [ pesannessoce
Apu W (O0)=Lu W) (33) : :
R u u,s 5 (41)
u (W (0) is the right eigen-vector, and the generalized solu- _
tion of Egs. (30) or (31) is the superposition of Eq. (32) Thatis
;:Zgu exp(it) ;M(O) (34) TZ/IO(SM)J@M)+/:0(§u)/ps@s/gu)]s(gs/su)dg

23 §u &u &s.s (42)

&, can be considered as normalized temperature difference
variable. |ntroducing the left eigen Vect@r(#) and requir- When we normalize the control parameter such that the
ing that instability occurring atx = 0, then,, andA; depend onx

N R in the following manners.
A v (O(D) S (35)
If th is stable, the real f are all negati u =o (43)

the system is stable, the real parts)gf are all negative. _ N
If non-linear effects are considered, Eq. (31) will have the As = 4s(0) + 0(er) ~ 25(0) (44)
form Wherek is some positive number. Obviously, depends
N RO very sensitively onw, whereas\; depends only weakly on
u=~Lu+N(u) (36) it because the leading term is a non-vanishing constant.
N~ (u™) represents the nonlinear contributionulfs still Similarly, the functionss,, T, F,, andF; depend also only
expressed in the form given by Eqg. (34), then the appropriateweakly ona. _ o
expressior§ (1) must be found so that the following relation By introducing the new variables, we can eliminate the
is satisfied when left multiplying Eq. (36) dependence of the probability distribution of the enslaved
N o, variables ong; so that J; becomes independent d&f,,
(v )y )) =8 (37) therefore, in Eq. (42) we may perform the integration over

Eq. (36) simply becomes &, in the second term of the right hand. We thus obtain that

by =Mk + g6, 62, ) @8) T=hr2) (45)

whereg,, = (v ™, N, & u W)Yy, Where the second part does not dependeorat least in

Eq. (38) has the same form as Eq. (22). The parametersthe present approximation. Therefore, the flux change close
B1, B2, B3, ..., B, can be modified to destabilize Eq. (38), to the instability point is governed by that of unstable sub-
so that one or a few, are equal to or greater than zero elements or modes alone
with the others have a negative real part and thus are

relating to the damping modes. If moéefor Re(x,,) >0 J(en) = J(@2) % Ju(@1) = Ju(@2) (46)
is sufficiently greater than other modes, then adiabatic Eq. (46) provides clear physical picture: by self-organized
elimination and self-organization work. process, only unstable sub-elements or modes with stronger

Nucleate boiling is a self-organized dynamic process, ability can get flux and develop. For open complex boiling
which means that nucleate boiling system is a typical system that consists of many subsystems, some of them
ordered dissipative structure [3]. The self-organized analysiscan use the heat flux better. In other words, heat flux
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is concentrated in one or a few subsystems or modes,violent turbulent flow, so we have a high density of active
which may dominant the macroscopic behavior of the whole sites. While during low heat flux, flow induced by bubble is

system. less intense than violent turbulent, we have a low density of
active sites.

4. Spatial correlation induced by bubble interactions 4.2. Engineering instructions

4.1. Interaction spatial correlation and fractal dimension Enhancement of boiling heat transfer by means of artifi-

cial cavities is a very important aspect of heat transfer re-
The above analyses showathheat flux is concentrated  search because boiling occursainvide variety of industrial
in one or a few sub-elements or modes, though a lot of applications. The distribution of artificial cavities is a key
possible modes exist simultaneously. In this way, we have factor for optimizing and controlling boiling heat transfer.
the expression The present investigations show that interactions among ac-
To(@1) — Tn(@2) = Jun(@1) — Jun (@2) ~ hnl?&, (47) tive sites or bubbles result i_n stochastic variatiqns of Io_cal
parameters and corresponding complex dynamic behaviors.
To consider bubble interaction spatial correlation, let us Placing artificial cavities on a theoretically optimized dis-
discuss heat flux interaction among different modes in all tribution of active points can greatly improve the nucleate

kind of spatial scales. We consider the heat flux from modes boiling heat transfer efficiency. The foregoing investigation
of last scale, heat flux increase in this scale and heat flux toresults in a natural theoretical distribution of active sites un-

next scale, the cascade heat flux balance then gives der the optimization that maximizes heat flux. It is shown
that the optimal distribution of active sites is dependent on

£ /u dv — g /gu d (48) the behavior of the active site itself. After knowing the fea-
Sdz Y ay Tz Y ture of artificial site and heating condition, which mean that

we can determine the distribution efand & for the artifi-
For arbitraryu andé distribution, Eq. (48) usually yields  cial site, we then can decide its distribution. The result may
_ provide some instructions for design and distribution of arti-
hy ~17F (49) . . L. .
ficial cavities on heating plates.
Depending on actual distribution efand¢, p, as a specific
parameter ranging from O to 1.
Considering that driving forces are chosen as the temper-5. Conclusions
ature difference between heater and bulk of system, we can
derive the fractal structure (N fractal structure is a kind of Bubble interaction is a classical puzzle during past
patch structure, and fractal geometry was developed by Man-decades. This paper proposed a novel theoretical analysis on
delbrot to describe the structure with fractal dimension [18]) the interactions among active sites or bubbles and the self-
describing the distribution of active sites or bubbles in fol- organizing effect among bubbles was revealed. The present
lowing way studies may give more reasonable mechanistic descriptions
Q0] 2, Jun(@1) = Jun(a2) pf nucleation _in boiIi_ng systems. The poss?ble a_ppligation
RN AR, N (1) — Joor1 (2) is correspond!ngly dlscu_ssed. The present mve_stlgatlon, al-
(n=1) (n=1) u(n=1) u(n—1) though preliminary, provides a renewed theoretical effort to
hnl,fén N [ In ](2”) (50) understand the underlying menfisms of nucleate boiling.

lin-1)

h(n—l)l(zn,]_)%‘nfl

Parameter 2- p is fractal dimension, whose value indicates
spatial distribution of active sites or bubbles. Fractal dimen-
sion physically embodies dynamics features of evolutional
complex boiling systems. Once we have thandé distrib-
ution (though determining and¢ distribution is not an easy
job), we can determine the distribution density of active sites
or bubbles. Here, we roughly give two examples; dindé
have trivial polynomial distribution, which may correspond
to case of laminar flow and heat transfer, we have 1/2
and 2— p = 3/2. If u and& have logarithmic distribution,
which may correspond to the case of turbulent flow and heat . . .
transfer, we have: —1/5 and 2— p=9/5. This result is [1] V.P. Carey, Liquid Vapor Phase-Transition Phenomena, Hemisphere,
Washington, DC, 1992, pp. 222—-246.
in agreement with experimental observations. During high [2] L.H. chai, M. Shoji, Boiling curves—Bifurcation and catastrophe,
heat flux, flow induced by bubble is very intense, more like Internat. J. Heat Mass Transfer 44 (2001) 4175-4179.
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